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SYNOPSIS 

An analytical expression is derived, which permits direct evaluation of the volumetric flow 
rate or the pressure gradient for the laminar flow of a power-law fluid in a concentric 
annulus. The derivation is valid for tangential as well as axial flow, provided a parameter 
q ,  in the problem formulation, is substituted by appropriate binary values. The final flow 
rate solution is in the form of an  elegant algebraic equation (not a definite integral) and 
holds for all values of the power-law index (not merely reciprocal integers). Attention is 
focused on the tangential pressure flow problem, where the zero-shear plane does not coincide 
with the location of the maximum velocity. 0 1992 John Wiley & Sons, Inc. 

INTRODUCTION 

As the solutions to flow problems of non-Newtonian 
fluids between coaxial cylinders are often complex, 
Worth investigated the accuracy of approximating 
such flows by an equivalent, parallel-plate geometry 
in four situations: tangential drag flow, axial drag 
flow, tangential pressure flow, and axial pressure 
flow. The parallel-plate analogy could result in con- 
siderable errors, for it is rigorously valid from a 
mathematical viewpoint only in the limit of the ra- 
dius ratio of the coaxial cylinders tending to unity. 
Hence, it would be beneficial if the exact solutions 
in cylindrical coordinates were available for the four 
flow cases of importance. Worth1 has presented ex- 
act, analytical solutions2 for the two drag flow sit- 
uations. However, he has expressed the volume rate 
of flow for the two pressure flow situations in the 
form of definite integrals, whose evaluation requires 
numerical quadrature in general. Though exact 
power-series expansion solutions are possible for the 
case where the power-law index is a reciprocal in- 
teger, such solutions are of limited practical utility 
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and are often cumbersome. The only analytical so- 
lution provided by Worth1 for these pressure flow 
situations is for the Newtonian case. 

The aim of this article is to establish an exact 
analytical expression for the volumetric flow rate 
during the flow of a power-law fluid under the in- 
fluence of a pressure gradient in the tangential or 
the axial direction. Such a solution would be useful 
in the analyses of some polymer processes because, 
as pointed out by Worth, tangential pressure flow 
occurs in spiral molds and axial pressure flow in 
pipe-extrusion dies. The formulation below is pre- 
sented as an attempt to eliminate the necessity of 
solving the two flow situations separately. 

THEORETICAL FORMULATION 

Under consideration is a steady, laminar, incom- 
pressible pressure flow in an isothermal system, 
consisting of two long, coaxial cylinders with neg- 
ligible end effects. The theoretical formulation is 
generalized, in that it applies to both tangential flow 
[ Fig. 1 ( a )  ] and axial flow [Fig. 1 (b)  1,  provided that 
the quantities are defined appropriately as shown in 
Table I. 

The equation of motion on neglecting inertial ef- 
fects can be reduced as shown: 
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Figure 1 
flow; ( b )  axial flow. 

Schematic diagram of pressure flow between coaxial cylinders: ( a )  tangential 

for tangential flow and ( l a )  
1 d P  
r dB 

- - 

I d  d P  
- - (rT,) = - - for axial flow. ( l b )  r d r  d z  

Equation (1) may be integrated to yield the shear 
stress in the following, dimensionless form (using q 
= 0 and q = 1 for tangential and axial flows, re- 
spectively) : 

( 2 )  

where 5 = r / R  is the dimensionless radial distance. 
Here, X is the dimensionless constant of integration 
and corresponds to the position of the zero-shear 
plane (i.e., 7* = 0 at  5 = A ) .  

r* = [9 - x 2 / 5 2 - 9  

The rheological behavior of the inelastic, non- 
Newtonian fluid is described by the Ostwald-de 
Waele power-law model: 

7 = -rn[yln-'y ( 3 )  

where the shear rate y is given, in general for the 
two flow situations, by r l -qd (  u / r  ' - 9 ) / d r .  The above 
rheological equation must be separately adapted 3,4*5 

for the two regions inside and outside of the zero- 
shear pIane (denoted by subscripts i and 0, respec- 
tively) after accounting for the sign of y, a fact ig- 
nored by Worth.' Thus, on combining eq. ( 2 )  with 
the dimensionless form of eq. ( 3 )  (namely, 7* 

= - I y* I n-'y* ), we obtain 

Table I Notation for Tangential and Axial Annular Pressure Flows 

Quantity Tangential Flow Axial Flow 

Parameter q 
Shear stress r 
Dimensionless shear stress r* 
Shear rate y 
Characteristic shear rate ye 
Dimensionless shear rate y* 
Velocity u 
Dimensionless velocity u* 
Dimensionless volumetric flow rate Q* 
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and fl 

= - ( p  - X2/[2-q)1'n for X 5 [ I 1. (4b) 

As y* = [ ' -qd( ~ * / [ ' - ~ ) / d [ ,  the dimensionless 
local velocities in the two regions obtained on in- 
tegration are 

and 

The no-slip boundary condition has been utilized at 
both stationary surfaces in obtaining eq. (5) .  

The equation for determining X is obtained by 
imposing the condition of the velocity being contin- 
uous at [ = h on eq. (5) .  Thus, 

r X  

The quantity of practical interest is the volu- 
metric flow rate, which may be expressed in dimen- 
sionless form as: 

Q* = 2 s' tqv*d [  ( 7 )  
K 

The above integral may be evaluated analytically, 
as demonstrated in the next section. 

EXACT ANALYTICAL EXPRESSION FOR 
VOLUMETRIC FLOW RATE 

Equation (7)  may be integrated by parts and the 
boundary conditions utilized to obtain 

Q* = - 2 / ( q  + 1) Ji Eq"(du*/d6) dE (8) 

The above equation may be rewritten using eq. ( 7 )  
as: 

Substituting eq. (4)  in eq. (9),  we obtain 

Integrating eq. (10) by parts yields 

Using eq. ( 6 ) ,  eq. ( 10) can also be written as: 

fl 

Combining eqs. ( 11) and ( 12),  an elegant analytical 
expression for the volumetric flow rate, valid for all 
values of n and K, is obtained as given below: 

Q* = ( 2  + q + q / n ) - ' [  (1 - X 2 ) 1 / n + 1  

The above derivation draws on some concepts 
first proposed by Hanks and L a r ~ e n , ~  and later used 
by Malik and Shenoy." The derivation is, however, 
different, in that the route adopted by Hanks and 
Larsen3 is more complicated and involves two it- 
erated integrals. Further, Malik and S h e n ~ y , ~  who 
studied generalized annular couette flow, had a sim- 
pler shear rate expression; they were concerned only 
with axial flow and hence did not require an inter- 
mediate step in their derivation, such as the one in 
eq. (9) above. 

RESULTS 

Tangential Annular Pressure Flow of 
a Power-law Fluid 

No analytical solution appears to exist in the lit- 
erature for this case. It may be simply obtained by 
setting q = 0 in eq. ( 13). Thus, 
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The values of A, to be used in the above equation, 
are given in Table I1 for various K and n.  They were 
computed by iteratively solving eq. (6)  with q = 0 
using the Newton-Raphson technique. The quad- 
rature routine QDAGS, available in IMSL,' was 
used to evaluate numerically the integrals involved. 

Knowing K and n,  the value of X may be inter- 
polated from Table I1 and may be subsequently used 
in eq. ( 14)  to calculate Q if ( - d P / d % )  is specified 
or ( - d P / d % )  if Q is specified. Figure 2 shows the 
plot of the dimensionless, volumetric flow rate Q* 
against the radius ratio K for various values of n 
from 0.1 to 1.0. 

Tangential Annular Pressure Flow of a Newtonian 
Fluid 

F o r n =  l a n d q = O , e q s . ( 6 ) a n d ( 1 4 ) y i e l d  

h 2  = 2K21n K / ( K 2  - 1) (154 

and 

Equation ( 15a) may be used to compute the A-values 
in the last row in Table 11. 

Tangential Annular Pressure Flow of a Power- 
Law Fluid with n Being Reciprocal Integers 

Analytical expressions for u * and X may be formally 
obtained from eqs. (5) and ( 6 ) ,  when the reciprocal 
of n is an integer, by binomial expansion, following 
the methodology of Fredrickson and Bird.7 Typi- 
cally, these expressions are cumbersome and may 
not permit easy calculation of A. Even for the sim- 
plest case (aside from the Newtonian), where n 
= 0.5, the A-equation is 

+ 4K41n( X2/K) + 6K4 = 0 ( 16) 

In Table 11, the X values for n = 0.5 conform with 
the above equation. 

Axial Annular Pressure Flow of a Power-Law 
Fluid 

Fredrickson and Bird7 first studied this problem, 
and their result is given in eq. (12)  by setting q = 1. 
As they could not reduce the integral in eq. ( 12)  for 
arbitrary n,  they evaluated the integral by power 

Table I1 Values of h(K,  n) for Tangential Annular Pressure Flow 

x 

n K = 0 . 1  K z 0 . 2  K = 0 . 3  K = 0 . 4  K z 0 . 5  K = 0 . 6  K = 0 . 7  K = 0 . 8  K = 0 . 9  

0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.0 

0.1531 
0.1583 
0.1632 
0.1679 
0.1722 
0.1764 
0.1803 
0.1841 
0.1877 
0.1911 
0.1943 
0.1974 
0.2004 
0.2032 
0.2059 
0.2085 
0.2110 
0.2134 
0.2157 

0.2943 
0.3013 
0.3077 
0.3136 
0.3190 
0.3240 
0.3286 
0.3330 
0.3370 
0.3403 
0.3443 
0.3477 
0.3508 
0.3537 
0.3565 
0.3592 
0.3616 
0.3640 
0.3662 

0.4235 
0.4304 
0.4366 
0.4422 
0.4472 
0.4518 
0.4560 
0.4599 
0.4635 
0.4668 
0.4698 
0.4726 
0.4753 
0.4778 
0.4801 
0.4822 
0.4843 
0.4862 
0.4880 

0.5399 
0.5457 
0.5508 
0.5554 
0.5595 
0.5632 
0.5665 
0.5695 
0.5723 
0.5749 
0.5772 
0.5794 
0.5814 
0.5832 
0.5849 
0.5866 
0.5881 
0.5895 
0.5908 

0.6435 
0.6478 
0.6516 
0.6550 
0.6579 
0.6606 
0.6629 
0.6651 
0.6670 
0.6688 
0.6704 
0.6719 
0.6733 
0.6746 
0.6758 
0.6769 
0.6779 
0.6789 
0.6798 

0.7349 
0.7378 
0.7403 
0.7424 
0.7443 
0.7460 
0.7475 
0.7489 
0.7501 
0.7512 
0.7523 
0.7532 
0.7541 
0.7549 
0.7556 
0.7563 
0.7569 
0.7575 
0.7581 

0.8151 
0.8167 
0.8181 
0.8193 
0.8204 
0.8213 
0.8221 
0.8229 
0.8236 
0.8242 
0.8247 
0.8252 
0.8257 
0.8261 
0.8265 
0.8269 
0.8273 
0.8276 
0.8279 

0.8853 
0.8860 
0.8866 
0.8871 
0.8875 
0.8879 
0.8883 
0.8886 
0.8889 
0.8892 
0.8894 
0.8896 
0.8898 
0.8900 
0.8902 
0.8903 
0.8905 
0.8906 
0.8907 

0.9465 
0.9467 
0.9468 
0.9469 
0.9470 
0.9471 
0.9472 
0.9473 
0.9474 
0.9474 
0.9475 
0.9475 
0.9476 
0.9476 
0.9477 
0.9477 
0.9477 
0.9478 
0.9478 
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Figure 2 Dimensionless volumetric flow rate vs. radius ratio for tangential pressure flow. 

series expansion for cases where ( l / n )  was an in- 
teger. 

Clearly, the useful equation for the volume rate 
of flow in this case is eq. (13) with q = 1, which is 
the result of Hanks and L a r ~ e n . ~  The required values 
of X have been tabulated by them for various K and 
n,  by solving eq. (6)  with q = 1. 

DISCUSSION 

For tangential pressure flow, Worth’ has stated that 
“the constant of integration ( A )  is related to the 
coordinate of the plane of zero shear stress (maxi- 
mum velocity) .” Though the plane of maximum ve- 
locity coincides with the plane of zero shear stress 
in the case of axial flows, it is important to note that 
this is not the case for tangential flows. This may 
be argued simply as follows. 

The shear stress is zero at that plane where the 
shear rate is zero. Using the relevant expression for 
y in Table I for the tangential flow geometry, it is 
observed that the shear stress is zero at  that value 
of  [ where du,/d[ = u,/[. On the other hand, the 
maximum in the velocity profile occurs at that value 
of [ where dus/d[  = 0. Since u, is non-zero every- 
where within the region ( K  < [ < l), the two con- 
ditions are never satisfied simultaneously. 

This is clearly observed in Figure 3, which shows 
the variation in the velocity profile with n (generated 
by numerical integration ofeqs. (5) for a radius ratio 
of 0.5 and q = 0) .  The zero-shear plane never cor- 
responds to the location of the maximum velocity 
for tangential pressure flow of a pseudoplastic fluid, 
though they move toward each other with increasing 
n. As du, /d [  ( = u g / [ )  must be positive at the plane 
of zero-shear, it necessarily lies between the inner 
cylinder and the plane of maximum velocity (see 
Fig. 3 ) . 
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zero -shear plane maximum velocity 

0'. 5 0.6 0.7 0.0 0.9 1.0 

DIMENSIONLESS RADIUS f, 

Figure 3 Velocity distributions for different n with K = 0.5 for tangential pressure flow. 

NOTATION P Viscosity of Newtonian fluid 
t Dimensionless distance in radial direc- 

K Radius ratio of inner to outer cylinder tion 
L Length of cylinders r,,, r,8 Components of stress tensor 
m Consistency index in power-law model Superscript denoting dimensionless 
n Power-law index quantity 
P Pressure 

* 
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